The flowcharts created can model analyses — however complex they are — to support your decision making process.
The Monte Carlo simulation software provides an array of definitions and constructs that will allow you to model the situation that you wish to examine. It also provides built-in auto-complete, IntelliSense, color-coding and “debugger” features that will help you build and verify the model. Simulation can be used to estimate or optimize the results needed for further analysis.
RENO is unique in the fact that it gives you the flexibility of a computer language, but instead of writing computer code, you use the familiar flowcharting concept to build your analysis.
With RENO you can:
These techniques can be applied for a wide variety of applications:
Flowchart Models
With RENO, you will use a familiar and intuitive flowcharting concept to build graphical models for the scenarios that you are trying to understand, quantify and/or simulate.
Employ easy point-and-click techniques to build flowcharts from blocks, gates and other resources that are already defined in the project — and easily define new modeling elements as your flowchart evolves.
Flexible Array of Building Blocks
The software provides an extensive and flexible selection of building blocks to serve different functions within the flowchart model. Some of the most commonly used modeling features include the ability to:
BlockSim Results within RENO Flowcharts
RENO flowcharts and BlockSim diagrams are directly integrated into the same software interface so you can work with both types of analyses together, and share many of the same resources. You have an option to use outputs from BlockSim RBDs or fault trees as inputs in your RENO flowcharts. For example, if you have an analytical diagram in BlockSim that describes the reliability of a system, you can publish a model that will provide the system reliability when it’s needed in any RENO flowchart. Likewise, if you have a BlockSim simulation diagram that estimates a system’s operating cost, uptime, availability and other factors of interest, you can use the new simulation definition resource to draw any of these results into a RENO flowchart. In addition, you can now use dynamic models for specific inputs in your BlockSim diagrams and then use RENO flowcharts to set the values for any given simulation.
Simulation Worksheets
The Simulation Worksheets feature allows you to vary values that are used in simulating a BlockSim RBD or RENO flowchart. This enables you to investigate the effect of one or more settings on the simulation results. Two of the most useful applications are the ability to:
Diagram Skins
Diagram Skins allow you to maximize the visual impact and appeal of your flowcharts by applying a set of preferences for the colors, lines, text and images used. Choose from a variety of skins included with the software or create your own. Diagram skins are universal across all desktop applications. This means that a single skin can contain the appearance settings for all types of diagrams in BlockSim/RENO, Weibull++/ALTA and Xfmea/RCM++/RBI.
Intelligent Features
Convenient Color-Coding: As you type, RENO automatically color-codes recognized resources, functions and operands to make it easy for you to spot potential problems.
Resource Preview: When you’re editing an equation, the convenient Resource Preview provides a quick summary of the properties of each resource or function. If you need more information or want to change a resource, you can open the full resource properties window with the click of a button.
Automatic Conversion for Time Values Entered in Different Units: You can define conversion factors for entering time values in different units.
Function Selector and Equation Editor: Two integrated tools provide instant access to all of the building blocks that you will use in the equations for your analyses. This includes:
Debugger Utility
RENO includes an integrated utility to help you validate and “debug” your flowchart models. This feature allows you to move through each step in a flowchart and watch the values as each block or resource is executed. You can also watch the progress as the software automatically performs a specified number of simulations in “debug” mode.
Extensive Potential Applications
The applications for RENO are limited only by your imagination and ability to create a flowchart model. Some of the most common include:
Sample Analysis Projects
Perhaps the best way to explore RENO’s features and functionality is by considering some examples. The software is shipped with an assortment of sample projects.
Customizable Results and Plots
Once you have constructed a flowchart model that will explore the scenario of interest to you, RENO executes the model to generate desired results. This may include averages, sums, arrays, minimum values, maximum values, etc. For models without randomized values, a single execution will yield all results of interest. When randomized values are present, discrete event Monte Carlo simulation will be utilized.
During simulation, you can track the real-time values for a result of interest while the model is executed. Watch the result’s progress over time, or see how your results vary during sensitivity analysis.
After simulation, you can see final results directly in the flowchart. View the values for all result storage blocks, as well as the last values for other blocks, if desired. Plus, you can use Excel®-compatible spreadsheets to explore all applicable results, and to copy/paste or export results of interest to your reports or customized analyses.
The Plot Setup allows you to completely customize the “look and feel” of plot graphics while the RS Draw metafile graphics editor provides the option to insert text, draw objects or mak particular points on plot graphics. You can save your plots in a variety of graphic file formats for use in other documents. With RENO you can use interactive plot zoom.
Sensitivity Analysis
RENO’s Sensitivity Analysis feature makes it easy to vary one or two variables across analyses/simulation runs. If you are analyzing potential investment strategies, you may wish to vary the number of years that you will be investing and/or the percentage of your income that will be invested to see how different inputs will affect the final results. Likewise, you may wish to generate reliability or availability results for a range of times in order to examine the equipment’s behavior over time.
Multiple Analyses for Optimum Values
The Multiple Analyses feature takes the sensitivity analysis capability a step further by allowing you to configure the software to automatically vary the specified variable(s) in order to determine the value that minimizes or maximizes a specified result.
For example, you could use this feature to automatically determine the optimum amount of inventory to maximize profits or the optimum preventive maintenance (PM) interval to minimize costs. The results of each analysis can be displayed in the plot sheet, with the optimum value marked on the plot.